AuthZForce Documentation
Release 4.3.0

Cyril Dangerville

January 15, 2016






Contents

Introduction
1.1

AuthZForce - Installation and Administration Guide
1.2

AuthZForce - User and Programmers Guide

~ = =

Indices and tables







CHAPTER 1

Introduction

AuthZForce is the reference implementation of the Authorization PDP Generic Enabler (formerly called Access Con-
trol GE). Indeed, as mandated by the GE specification, this implementation provides an API to get authorization
decisions based on authorization policies, and authorization requests from PEPs. The API follows the REST archi-
tecture style, and complies with XACML v3.0. XACML (eXtensible Access Control Markup Language) is a OASIS
standard for authorization policy format and evaluation logic, as well as for the authorization decision request/response
format. The PDP (Policy Decision Point) and the PEP (Policy Enforcement Point) terms are defined in the XACML
standard. This GEri plays the role of a PDP.

To fulfill the XACML architecture, you may need a PEP (Policy Enforcement Point) to protect your application, which
is not provided here. For REST APIs, we can use the PEP Proxy (Wilma) available in the FIWARE catalogue.

Contents:

1.1 AuthZForce - Installation and Administration Guide

This guide provides the procedure to install the AuthZForce server, including system requirements and troubleshooting
instructions.

1.1.1 System Requirements

* CPU frequency: 2.6 GHz min
¢ CPU architecture: 1686/x86_64
RAM: 4GB min

* Disk space: 10 GB min

* QOperating System: Ubuntu 14.04 LTS

* Java environment (automatically installed with the Ubuntu package):
- JDK 7;

— Tomcat 7.x.



http://catalogue.fiware.org/enablers/pep-proxy-wilma

AuthZForce Documentation, Release 4.3.0

1.1.2 Installation
Minimal
1. Download the binary (Ubuntu package with .deb extension) release of AuthZForce from the Github project
releases page. You get a file called authzforce-ce-server_4.3.0_all.deb.
2. Copy this file to the host where you want to install the software.

3. On the host, from the directory where you copied this file, run the following commands:

$ sudo aptitude install gdebi curl
$ sudo gdebi authzforce-ce-server_4.3.0_all.deb

4. At the end, you will see a message giving optional instructions to go through. Please follow them as necessary.

Note that Tomcat default configuration may specify a very low value for the Java Xmx flag, causing the authzforce
webapp startup to fail. In that case, make sure Tomcat with Xmx at 1Go or more (2 Go recommended). For ex-
ample, for ubuntu 12.04, Tomcat default Xmx used to be 128m. You can fix it as follows: | $ sudo sed -i
"s/-Xmx128m/-Xmx1024m/" /etc/default/tomcat|$ sudo service tomcat7 restart

Advanced

The previous section gave you minimal installation steps to get started testing the features of the GE API. This may
be enough for testing purposes, but barely for production. If you are targeting a production environment, you have to
carry out extra installation and configuration steps to address non-functional aspects: security (including availability),
performance, etc. The Appendix also gives some recommendations on what you should do.

1.1.3 Administration

Tomcat

For configuring and managing Tomcat, please refer to the official user guide.

Authzforce webapp

The Authzforce webapp configuration directory is located here: /opt/authzforce-ce-server/conft.

In particular, the file Logback . xml configures the logging for the webapp (independently from Tomcat). By default,
Authzforce-specific logs goto /var/log/tomcat7/authzforce-ce/error.log.

Restart Tomcat to apply any configuration change: $ sudo service tomcat7 restart

Policy Domain Administration

The Concept of Policy Domain

The application is multi-tenant, i.e. it allows users or organizations to work on authorization policies in complete
isolation from each other. In this document, we use the term domain instead of fenant. In this context, a policy domain
consists of:

* Various metadata about the domain: ID assigned by the Authzforce API, external ID (assigned by the provision-
ing client), description, reference to the (root) active policy in the domain;

* A policy repository;

2 Chapter 1. Introduction


https://github.com/authzforce/server/releases/download/release-4.3.0/authzforce-ce-server_4.3.0_all.deb
https://github.com/authzforce/server/releases/download/release-4.3.0/authzforce-ce-server_4.3.0_all.deb
http://tomcat.apache.org/tomcat-7.0-doc/index.html

AuthZForce Documentation, Release 4.3.0

* Attribute Providers configuration: attribute providers provide attributes that the PEP does NOT directly pro-
vide in the XACML <Request>. For example, an attribute provider may get attribute values from an external
database.

The reasons for creating different domains:

 Users or organizations do not want others to access their data, or even be impacted by others working on the
same application.

* The same user or organization may want to work on different domains for different use cases; e.g. work with
one policyset for production environment, another for testing, another for a specific use case project, etc.

Domain Creation

You create a domain by doing a HTTP POST request with XML payload to URL:
http://${SERVER_NAME}:${PORT}/authzforce/domains. Replace ${SERVER_NAME} and
${PORT} with your server hostname and port for HTTP. You can do it with curl tool:

$ curl --verbose —--trace-ascii - —--request POST \

-—-header "Content-Type: application/xml;charset=UTF-8" \

--data '<?xml version="1.0" encoding="UTF-8"?><taz:domainProperties xmlns:taz="http://ay
——header "Accept: application/xml" http://${SERVER_NAME}:${PORT}/authzforce/domains

> POST /authzforce/domains HTTP/1.1

> User—-Agent: curl/7.22.0 (x86_64-pc-linux—gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3
> Host: az.testbed.fi-ware.eu

> Content-Type: application/xml;charset=UTF-8

> Accept: application/xml

> Content-Length: 227

>

< HTTP/1.1 200 OK

< Server: Authorization System

< Date: Mon, 04 Aug 2014 13:00:12 GMT
< Content-Type: application/xml

< Transfer-Encoding: chunked

<

<

?xml version="1.0" encoding="UTF-8" standalone="yes"?><link xmlns="http://www.w3.0rg/2

WARNING: Mind the leading and trailing single quotes for the ——data argument. Do not use double quotes instead
of these single quotes, otherwise curl will remove the double quotes in the XML payload itself, and send invalid XML
which will be rejected by the server. The ——trace—-ascii - argument (the last dash here means stdout) is indeed
a way to check the actual request body sent by curl. So use it only if you need to dump the outgoing (and incoming)
data, in particular the request body, on stdout.

The href value in the response above gives you the domain ID (in the form of a UUID), that you will now use for
assigning user roles on the domain.

Domain Removal

You remove a domain by doing a HTTP DELETE request with XML payload to URL:
http://${SERVER_NAME} :${PORT}/authzforce/domains/{domain_ID}.

For example with curl tool:

$ curl —--verbose —--request DELETE —--header "Content-Type: application/xml;charset=UTF-8'
—-header "Accept: application/xml" http://${SERVER_NAME}:S${PORT}/authzforce/domains

1.1. AuthZForce - Installation and Administration Guide 3

thzforce.gitl

4 libidn/1.2:

05/Atom" rel:-

\
h_D23LsDEeWF«



AuthZForce Documentation, Release 4.3.0

Policy administration is part of the Authorization Server API, addressed more extensively in the Programmer Guide.

1.1.4 Sanity check procedures

The Sanity Check Procedures are the steps that a System Administrator will take to verify that the installation is ready
to be tested. This is therefore a preliminary set of tests to ensure that obvious or basic malfunctioning is fixed before
proceeding to unit tests, integration tests and user validation.

End to End testing

To check the proper deployment and operation of the Authorization Server, perform the following steps:

1. Get the list of policy administration domains by doing the following HTTP request, replacing $ {host } with
the server hostname, and $ {port } with the HTTP port of the server, for example with curl tool:

$ curl —--verbose —--show—-error —-write—-out '\n' —--request GET http://S${host}:${port}/authzforce/c

2. Check the response which should have the following headers and body (there may be more headers which do
not require checking here):

Status Code: 200 OK
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:resources xmlns:ns2="http://authzforce.github.io/rest-api-model/xmlns/authz/4"
. list of links to policy domains omitted here...

Y

</ns2:resources>

You can check the exact body format in the representation element of response code 200 for method getDomains,
and all other API resources and operations in general, in the WADL (Web Application Description Language) docu-
ment available at the following URL:

http://${host}:${port}/authzforce/?_wadl ‘

List of Running Processes

* One or more java processes for Tomcat.

Network interfaces Up & Open

* TCP 22;
» TCP 8080.

The port 8080 can be replaced by any other available port by any other port Tomcat is listening to for HTTP connections
to the webapp.

Databases

None.

4 Chapter 1. Introduction



AuthZForce Documentation, Release 4.3.0

1.1.5 Diagnosis Procedures

1. Perform the test described in End to End testing.

2. If you get a Connection Refused/error, check whether Tomcat is started:

$ sudo service tomcat?7 status ‘

3. If status stopped, start Tomcat:

$ sudo service tomcat? ‘

4. If Tomcat fails to start, check for any Tomcat high-level error in Tomcat log directory: /var/log/tomcat7
5. If Tomcat is successfully started (no error in server logs), perform the test described in End to End testing again.

6. If you still get a Connection Refused/error, check whether Tomcat is not listening on a different port: $
sudo netstat —-lataupen|grep java

7. If you still get a connection refused/error, especially if you are connecting remotely, check whether you are able
to connect locally, then check the network link, i.e. whether any network filtering is in place on the host or on
the access network, or other network issue: network interface status, DNS/IP adress resolution, routing, etc.

8. If you get an error 404 Not Found, make sure the webapp is deployed and enabled in Tomcat. Check for any webapp d
/var/log/tomcat7/authzforce/error.log.

Resource availability

To have a healthy enabler, the resource requirements listed in System Requirements must be satisfied, in particular:
¢ Minimum RAM: 4GB;
¢ Minimum CPU: 2.6 GHz;
* Minimum Disk space: 10 GB.

Remote Service Access

None.

Resource consumption

The resource consumption strongly depends on the number of concurrent clients and requests per client, the number of
policy domains (a.k.a. tenants in this context) managed by the Authorization Server, and the complexity of the policies
defined by administrators of each domain.

The memory consumption shall remain under 80% of allocated RAM. See System Requirements for the minimum
required RAM.

The CPU usage shall remain under 80% of allocated CPU. See System Requirements for the minimum required CPU.

As for disk usage, at any time, there should be 1GB free space left on the disk.

1/0 flows

e HTTPS flows with possibly large XML payloads to port 8080;
e HTTP flow to port 8080.

1.1. AuthZForce - Installation and Administration Guide 5



AuthZForce Documentation, Release 4.3.0

The port 8080 can be replaced by any other port Tomcat is listening to for HTTP connections to the webapp.

1.1.6 Appendix

Security setup for production

You have to secure the environment of the application server and the server itself. Securing the environment of
a server in general will not be addressed here because it is a large subject for which you can find a lot of public
documentation. You will learn about perimeter security, network and transport-level security (firewall, IDS/IPS...), OS
security, application-level security (Web Application Firewall), etc. For instance, the °NIST Guide to General Server
Security” (SP 800-123) is a good start.

Server Security Setup

For more Tomcat-specific security guidelines, please read Tomcat 7 Security considerations.

For security of communications (confidentiality, integrity, client/server authentication), it is also recommended to
enable SSL/TLS with PKI certificates. The first step to set up this is to have your Certification Authority (PKI) issue a
server certificate for your AuthZForce instance. You can also issue certificates for clients if you want to require client
certificate authentication to access the AuthZForce server/API. If you don’t have such a CA at hand, you can create
your own (a basic one) with instructions given in the next section.

Certificate Authority Setup

If you have a CA already, you can skip this section. So this section is about creating a local Certificate Authority
(CA) for issuing certificates of the Authorization Server and clients, for authentication, integrity and confidentiality
purposes. This procedure requires using a JDK 1.7 or later. (For the sake of simplicity, we do not use a subordinate
CA, although you should for production, see keytool command example, use the pathlen parameter to restrict
number of subordinate CA, pathlen=0 means no subordinate.)

1. Generate the CA keypair and certificate on the platform where the Authorization Server is to be deployed
(change the validity argument to your security requirements, example here is 365 days):

$ keytool -genkeypair -keystore taz-ca-keystore.jks —-alias taz-ca —dname "CN=Thales| AuthzForce C
—~keyalg RSA -keysize 2048 -validity 365 -ext bc:c="ca:true,pathlen:0"

2. Export the CA certificate to PEM format for easier distribution to clients:

$ keytool -keystore taz-ca-keystore.jks —-alias taz-ca -exportcert -rfc > taz-ca-cert.pem

Server SSL Certificate Setup

For Tomcat 7, refer to the Tomcat 7 SSL/TLS Configuration HOW-TO.

User and Role Management Setup

In production, access to the API must be restricted and explicitly authorized. To control which clients can do what on
what parts of API, we need to have access to user identity and attributes and assign proper roles to them. These user
and role management features are no longer supported by the AuthZForce server itself, but should be delegated to the
Identity Management GE.

6 Chapter 1. Introduction


https://tomcat.apache.org/tomcat-7.0-doc/security-howto.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html#genkeypairCmd
https://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

AuthZForce Documentation, Release 4.3.0

Domain Role Assignment

In production, access to the API must be restricted and explicitly authorized. To control which clients can do what
on what parts of API, we need to have access to user identity and attributes and assign proper roles to them. These
user role assignment features are no longer supported by the AuthZForce server itself, but should be delegated to the
Identity Management GE.

Performance Tuning
For Tomcat and JVM tuning, we strongly recommend reading and applying - when relevant - the guidelines from the
following links:

* Performance tuning best practices for VMware Apache Tomcat;

* How to optimize tomcat performance in production;

* Apache Tomcat Tuning Guide for REST/HTTP APIs.

Last but not least, consider tuning the OS, hardware, network, using load-balancing, high-availability solutions, and
SO on.

1.2 AuthZForce - User and Programmers Guide

AuthZForce is the reference implementation of the Authorization PDP GE. In this regard, it provides an API to manage
XACML-based access control policies and provide authorization decisions based on such policies and the context of
a given access request. This guide explains how to use the API.

1.2.1 Background and Detail

This User and Programmers Guide relates to the reference implementation of the Authorization PDP GE which is part
of FIWARE Security Architecture. Please find more information about this Generic Enabler in the following Open
Specification.

1.2.2 User Guide

Since the Authorization PDP is a Generic Enabler which provides backend functionality to other applications (e.g.
Generic Enablers or end user facing applications) and security administrators, we do not distinguish between the User
and Programmers Guide. Please refer to the Programmers Guide section for more information.

1.2.3 Programmer Guide

AuthZForce provides the following APIs:

* PDP API (PDP = Policy Decision Point in the XACML terminology): provides an API for getting authorization
decisions computed by a XACML-compliant access control engine;

¢ PAP API (PAP = Policy Administration Point in XACML terminology): provides API for managing XACML
policies to be handled by the Authorization Service PDP.

The full API (RESTful) is described by a document written in the Web Application Description Language format
(WADL) and associated XML schema files available in the source release of Github project ‘rest-api-model’, more
specifically in file src/main/resources/authz-api.wadl.

1.2. AuthZForce - User and Programmers Guide 7


http://kb.vmware.com/kb/2013486
http://www.genericarticles.com/mediawiki/index.php?title=How_to_optimize_tomcat_performance_in_production
https://javamaster.wordpress.com/2013/03/13/apache-tomcat-tuning-guide/
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Security_Architecture
http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Security.AuthorizationPDP_R4
http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Security.AuthorizationPDP_R4
https://github.com/authzforce/rest-api-model/archive/release-4.3.0.zip

AuthZForce Documentation, Release 4.3.0

XACML is the main international OASIS standard for access control language and request-response formats, that
addresses most use cases of access control. AuthZForce supports the full core XACML 3.0 language; therefore it
allows to enforce very generic and complex access control policies.

Attribute-Based Access Control
AuthZForce provides Attribute-Based Access Control. To understand what is meant by “attribute” in the context of
access control, below is the list of categories of attributes identified by the XACML standard:

* Subject attributes: the subject is an actor (human, program, device, etc.) requesting access to a resource; at-
tributes may be user ID, Organization, Role, Clearance, etc.

* Resource attributes: the resource is a passive entity (from the access control perspective) on which subject
requests to act upon (e.g. data but also human, device, application, etc.); resource attributes may be resource 1D,
URL, classification, etc.

» Action attributes: the action is the action that the subject requests to perform on the resource (e.g. create, read,
delete); attributes may be action ID, parameter A, parameter B, etc.

* Environment attributes: anything else, e.g. current time, CPU load of the PEP/PDP, global threat level, etc.

Domain Management API

The API allows AuthZForce application administrators or administration interfaces to create domains for the users, and
remove domains once they are no longer used. This part of the API is described in the Installation and Administration
guide. The API also allows users to update certain properties of the domain allocated to them:

* An externalld (optional) for the domain, which users/clients can modify and more easily use as reference, as
opposed to the unique and read-only domain ID assigned by the API - once and for all - when the domain is
created;

* Root policy reference (mandatory): a policy ID and version constraints expected to match one of the domain’s
policies and used as the root policy enforced by the domain’s PDP. These policies are managed via the Policy
Administration API described in the next section;

* A description of the domain (optional).
You may retrieve the current domain properties as follows:
* Method: GET
 Path: /domains/{domainld}/properties
* Headers:
— Accept: application/xml; charset=UTF-8

For example, this request updates the externalld and the root policy reference some policy ‘PolicyABC’ that must exist
in the domain (added via the PAP API mentioned later) as a prerequisite:

GET /domains/iMnxv7sDEeWFwqVFFMDLTQ/properties
HTTP/1.1
Accept: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns4:domainProperties xmlns:ns4="http://authzforce.github.io/rest-api-model/xmlns/authz
<rootPolicyRef Version="1.0">PolicyABC</rootPolicyRef>

</ns4:domainProperties>

You may update the domain properties as follows:

8 Chapter 1. Introduction

4m">



AuthZForce Documentation, Release 4.3.0

Method: PUT

 Path: /domains/{domainld}/properties

* Headers:
— Content-Type: application/xml; charset=UTF-8
— Accept: application/xml; charset=UTF-8

* Body: new properties.

For example, this request sets/updates the externalld to my-domain-123 and the root policy reference to some policy
PolicyABC (in version 2.1) that must exist in the domain (added via the PAP API mentioned later) as a prerequisite:

PUT /domains/iMnxv7sDEeWFwqVFFMDLTQ/properties
HTTP/1.1

Accept: application/xml; charset=UTF-8
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns4:domainProperties xmlns:ns4="http://authzforce.github.io/rest-api-model/xmlns/authz
externalld="my-domain-123">
<rootPolicyRef Version="2.1">PolicyDEF</rootPolicyRef>

</ns4:domainProperties>

Note that the Version attribute is optional here. If omitted, the latest version available is used. The response is the new
properties.

As a result, the policy now enforced by the domain’s Policy Decision Point (see the PDP API in the last section
of this document) is PolicyABC (in version 2.7) and the domain’s external ID my-domain-123 points to the domain
iMnxv7sDEeWFwqVFFMDLTQ. Clients may only rely on the externalld under their control to recover the API-defined
domain ID, before they begin to use other API operations that require the API-defined domain ID. Indeed, clients may
request the API-defined ID corresponding to a given externalld as follows:

GET /domains?externalld=my-domain-123

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns2:resources xmlns:ns2="http://authzforce.github.io/rest-api-model/xmlns/authz/4" xmly
<ns3:1link rel="item" href="iMnxv7sDEeWFwgqVFFMDLTQ" title="iMnxv7sDEeWFwgVFFMDLTQ" />

</ns2:resources>

1s:ns3="http:,

Policy Administration API

The PAP is used by policy administrators to manage the policy repository from which the PDP loads the enforced
policies. The PAP supports multi-tenancy in the form of generic administration domains that are separate from each
other. Each policy administator (except the Superadmin) is in fact a domain administrator, insofar as he is allowed to
manage the policy for one or more specific domains. Domains are typically used to support isolation of tenants (one
domain per tenant).

Adding Policies

The PAP provides a RESTful API for adding policies to a specific domain. HTTP requests to this API must be formatted
as follows:

* Method: POST
* Path: /domains/{domainld }/pap/policies

1.2. AuthZForce - User and Programmers Guide 9



AuthZForce Documentation, Release 4.3.0

* Headers:
— Content-Type: application/xml; charset=UTF-8
— Accept: application/xml; charset=UTF-8
* Body: XACML PolicySet as defined in the XACML 3.0 schema.

Example of request given below:

POST /domains/iMnxv7sDEeWFwqVFFMDLTQ/pap/policies
HTTP/1.1

Accept: application/xml; charset=UTF-8
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PolicySet xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" PolicySetId="P1"
Version="1.0" PolicyCombiningAlgId="urn:ocasis:names:tc:xacml:3.0:policy-combining-al
<Description>Sample PolicySet</Description>
<Target />
<Policy PolicyId="MissionManagementApp" Version="1.0"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-y
<Description>Policy for MissionManagementApp</Description>
<Target>
<AnyOf>
<AllOf>
<Match MatchId="urn:ocasis:names:tc:xacml:1.0:function:string-equal"

gorithm:deny-

nless-permit!

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">MissionMar

<AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:attx

ibute-catego:

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resourcectid" DataType:

MustBePresent="true" />
</Match>
</A110f>
</AnyOf>
</Target>
<Rule RuleId="MissionManager_role_can_manage_team" Effect="Permit">
<Description>Only MissionManager role authorized to manage the mission team<
<Target>
<AnyOf>
<All0f>
<Match MatchId="urn:ocasis:names:tc:xacml:1.0:function:string-equa
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#st
<AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:4
AttributeId="urn:thales:xacml:2.0:resource:sub-resource-i
MustBePresent="true" />
</Match>
</Al10f>
</AnyOf>
<AnyOf>
<All0f>
<Match MatchId="urn:ocasis:names:tc:xacml:1.0:function:string-equg
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#st
<AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:3
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-{
MustBePresent="true" />
</Match>
</Al110f>
</AnyOf>
</Target>
<Condition>

Description>

">

ring">Team</]
ttribute-catc
d" DataType=!

">

ring">manage:
ttribute-catc
d" DataType='

10 Chapter 1. Introduction



AuthZForce Documentation, Release 4.3.0

<Apply FunctionId="urn:oasis:names:tc:xacml:3.0:function:any-of">
<Function FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal" />
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">MissionManager:
<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subje¢t:role"
DataType="http://www.w3.0rg/2001/XMLSchema#string" MustBePresent="false"
Category="urn:oasis:names:tc:xacml:1.0:subject-category:access—-subject" />
</RApply>
</Condition>
</Rule>
</Policy>
</PolicySet>

The HTTP response status is 200 with a link to manage the new policy, if the request was successfull. The link is made
of the policy ID and version separated by /.

Response

HITP/1.1 200 OK
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns3:1link xmlns:ns3="http://www.w3.0rg/2005/Atom" rel="item" href="P1/1.0" title="Policy 'P1' v1.0"/:

Getting Policies and Policy Versions

Once added to the domain as shown previously, you can get the policy by its ID as follows:
* Method: GET
* Path: /domains/{domainld }/pap/policies/{policyld}
* Headers:
— Accept: application/xml; charset=UTF-8

For example:

GET /domains/iMnxv7sDEeWFwgVFFMDLTQ/pap/policies/P1
HTTP/1.1
Accept: application/xml; charset=UTF-8

The response is the list of links to the versions of the policy available in the domain:

HTTP/1.1 200 OK
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:resources xmlns:ns2="http://authzforce.github.io/rest-api-model/xmlns/authz/4" xmlns:ns3="http:,
<ns3:1link rel="item" href="1.0"/>
<ns3:1link rel="item" href="1.1"/>
<ns3:1link rel="item" href="2.0"/>
<ns3:1link rel="item" href="2.1"/>
<ns3:1link rel="item" href="2.2"/>

</ns2:resources>

Therefore, you may get a specific version of the policy as follows:
e Method: GET
 Path: /domains/{domainld }/pap/policies/{policyld }/{ version}

1.2. AuthZForce - User and Programmers Guide 11



AuthZForce Documentation, Release 4.3.0

* Headers:
— Accept: application/xml; charset=UTF-8

For example:

GET /domains/iMnxv7sDEeWFwqVFFMDLTQ/pap/policies/P1/1.0
HTTP/1.1
Accept: application/xml; charset=UTF-8

The response is the policy document (XACML PolicySet) in this version.
Last but not least, you may get all policies in the domain as follows:
* Method: GET
* Path: /domains/{domainld}/pap/policies
* Headers:
— Accept: application/xml; charset=UTF-8

For example:

GET /domains/iMnxv7sDEeWFwqVFFMDLTQ/pap/policies
HTTP/1.1
Accept: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns2:resources xmlns:ns2="http://authzforce.github.io/rest-api-model/xmlns/authz/4" xmly
<ns3:1link rel="item" href="root"/>
<ns3:1link rel="item" href="P1"/>
<ns3:1link rel="item" href="pP2"/>

</ns2:resources>

1s:ns3="http:,

Removing Policies and Policy Versions

You may remove a policy version from the domain as follows:
* Method: DELETE
* Path: /domains/{domainld}/pap/policies/{policyld}/{version}
* Headers:
— Accept: application/xml; charset=UTF-8

For example:

DELETE /domains/iMnxv7sDEeWFwqVFFMDLTQ/pap/policies/P1/1.0
HTTP/1.1
Accept: application/xml; charset=UTF-8

The response is the removed policy document (XACML PolicySet) in this version.
You may remove all versions of a policy from the domain as follows:

* Method: DELETE

* Path: /domains/{domainld}/pap/policies/{policyld}

* Headers:

— Accept: application/xml; charset=UTF-8

12 Chapter 1. Introduction



AuthZForce Documentation, Release 4.3.0

For example:

DELETE /domains/iMnxv7sDEeWFwqVFFMDLTQ/pap/policies/P1
HTTP/1.1
Accept: application/xml; charset=UTF-8

The response is the list of links to all the removed versions of the policy, similar to the the GET request on the same
URL.

Re-usable Policies (e.g. for Hierarchical RBAC)

The PAP API supports policies that have references to other policies existing in the domain. This allows to in-
clude/reuse a given policy from multiple policies, or multiple parts of the same policy, by means of XACML <Policy-
SetldReference>s. One major application of this is Hierarchical RBAC. You can refer to the “’Core and hierarchical
role based access control (RBAC) profile of XACML v3.0” specification for how to achieve Hierarchical RBAC with
<PolicySetldReference>s.

For example, I want to define a role Employee and a role Manager derived from Employee. In other words, permissions
of an Employee are included in the permissions of a Manager.

In order to create this role hierarchy, we first add the Employee’s Permission PolicySet:

POST /domains/iMnxv7sDEeWFwqVFFMDLTQ/pap/policies
HTTP/1.1

Accept: application/xml; charset=UTF-8
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>
<PolicySet PolicySetId="PPS:Employee" Version="1.0"
PolicyCombiningAlgId="urn:ocasis:names:tc:xacml:3.0:policy-combining—-algorithm:der
<Description>Permissions specific to the Employee role</Description>
<Target />
<Policy PolicyId="PP:Employee" Version="1.0"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:dery
<Target />
<Rule RulelId="Permission_to_create_issue_ticket" Effect="Permit">
<Target>
<AnyOf>
<AllO0f>
<Match MatchId="urn:ocasis:names:tc:xacml:1.0:function:stringy
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchen
<AttributeDesignator Category="urn:oasis:names:tc:xacml:]

ly—unless—perr

ly—unless—perr

requal">
affstring">ht1
.0:attribute-

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:rgsource—-id" D«

MustBePresent="true" />
</Match>
</Al10f>
</AnyOf>
<AnyOf>
<Al10f>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:stringtequal">

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchen
<AttributeDesignator Category="urn:oasis:names:tc:xacml:]
DataType="http://www.w3.0rg/2001/XMLSchema#string" My

</Match>

</Al110f>
</AnyOf>
</Target>
</Rule>

a#string">PO!
.0:attribute-
stBePresent='

1.2. AuthZForce - User and Programmers Guide 13



AuthZForce Documentation, Release 4.3.0

</Policy>
</PolicySet>

Then we add the role-based hierarchical policy defining the Employee role and the Manager role, both with a reference
(<PolicySetldReference>) to the Employee’s Permission PolicySet added previously; except the Manager role one
policy more, so more permissions:

POST /domains/iMnxv7sDEeWFwqVFFMDLTQ/pap/policies
HTTP/1.1

Accept: application/xml; charset=UTF-8
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<PolicySet xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" xmlns:xsi="http://www
PolicySetId="rbac:policyset" Version="1.0"
PolicyCombiningAlgId="urn:ocasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-ury
<Description>Root PolicySet</Description>
<Target />
<PolicySet PolicySetId="RPS:Employee" Version="1.0"

w3.0rg/2001/:

lless—-permit™:

PolicyCombiningAlgId="urn:ocasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-unless-perr

<Description>
Employee Role PolicySet
</Description>
<Target>
<AnyOf>
<All10f>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string

">Employee</]

<AttributeDesignator Category="urn:oasis:names:tc:xacml:1.0:subject-category::

DataType="http://www.w3.0rg/2001/XMLSchema#string" MustBePreg
</Match>
</All10f>
</AnyOf>

</Target>

<PolicySetIdReference>PPS:Employee</PolicySetIdReference>
</PolicySet>
<PolicySet PolicySetId="RPS:Manager" Version="1.0"

ent="true" /:

PolicyCombiningAlgId="urn:ocasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-unless-perr

<Description>
Manager Role PolicySet
</Description>
<Target>
<AnyOf>
<Al110f>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string

">Manager</Af

<AttributeDesignator Category="urn:oasis:names:tc:xacml:1.0:subject-category::

DataType="http://www.w3.0rg/2001/XMLSchema#string" MustBePreg
</Match>
</All10f>
</AnyOf>
</Target>
<Policy PolicyId="PPl:Manager" Version="1.0"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:den
<Description>Permissions specific to Manager Role</Description>
<Target />
<Rule RulelId="Permission_to_create_new_project" Effect="Permit">
<Target>

ent="true" />

y—unless—perr

14 Chapter 1. Introduction



AuthZForce Documentation, Release 4.3.0

<AnyOf>
<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:stringtequal">

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchen
<AttributeDesignator Category="urn:oasis:names:tc:xacml:]
DataType="http://www.w3.0rg/2001/XMLSchema#string" My
</Match>
</A110f>
</AnyOf>
<AnyOf>
<All10f>

a#fstring">ht1
.0:attribute-
stBePresent=

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:stringtequal">

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchen
<AttributeDesignator Category="urn:oasis:names:tc:xacml:]

DataType="http://www.w3.0rg/2001/XMLSchema#string" My
</Match>
</Al10f>
</AnyOf>
</Target>
</Rule>

</Policy>

<!-- This role is senior to the Employee role, therefore includes the Employee rd

<PolicySetIdReference>PPS:Employee</PolicySetIdReference>

</PolicySet>
</PolicySet>

You may add more policies for more roles as you wish. Once you are satisfied with your role hierarchy, you may apply
your new RBAC policy by updating the domain’s root policy reference (this may not be necessary if you reused the
same root policy ID as before, in which case your policy is already active by now):

PUT /domains/iMnxv7sDEeWFwqVFFMDLTQ/properties
HTTP/1.1

Accept: application/xml; charset=UTF-8
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns4:domainProperties xmlns:ns4="http://authzforce.github.io/rest-api-model/xmlns/authz
<rootPolicyRef>rbac:policyset</rootPolicyRef>

</ns4:domainProperties>

a#string">PO!
.0:attribute-
stBePresent=

le Permissio:

4">

The policy is now enforced by the PDP as described in the next section.

Policy Decision API

The PDP API returns an authorization decision based on the currently enforced policy, access control attributes pro-
vided in the request and possibly other attributes resolved by the PDP itself. The Authorization decision is typically
Permit or Deny. The PDP is able to resolve extra attributes not provided directly in the request, such as the current
date/time (environment attribute).

The PDP provides an HTTP RESTful API for requesting authorization decisions. The HTTP request must be formatted
as follows:

* Method: POST
* Path: /domains/{domainld}/pdp
* Headers:

— Content-Type: application/xml; charset=UTF-8

1.2. AuthZForce - User and Programmers Guide 15



AuthZForce Documentation, Release 4.3.0

— Accept: application/xml; charset=UTF-8
* Body: XACML Request as defined in the XACML 3.0 schema.
The HTTP response body is a XACML Response as defined in the XACML 3.0 schema.

Example of request given below:

POST /domains/iMnxv7sDEeWFwgVFFMDLTQ/pdp
HTTP/1.1

Host: 127.0.0.1:8080

Accept: application/xml; charset=UTF-8
Accept-Encoding: gzip, deflate

Connection: keep-alive

Content-Type: application/xml; charset=UTF-8
Content-Length: 954

<?xml version='1l].0' encoding='UTF-8' standalone='yes'?>
<Request xmlns='urn:oasis:names:tc:xacml:3.0:core:schema:wd-17' CombinedDecision="false'
ReturnPolicyIdList="false">
<Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access—-subject">
<Attribute Attributeld='urn:oasis:names:tc:xacml:1.0:subject:subject-id’
IncludeInResult="false">
<AttributeValue DataType='http://www.w3.0rg/2001/XMLSchema#string'>joe</Attri
</Attribute>
<Attribute AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role" IncludeInResul
<AttributeValue DataType='http://www.w3.0rg/2001/XMLSchema#string'>Manager</2
</Attribute>
</Attributes>
<Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource">
<Attribute AttributeId='urn:oasis:names:tc:xacml:1.0:resource:resource-id’
IncludeInResult="false">
<AttributeValue DataType='http://www.w3.0rg/2001/XMLSchema#string'>Missid
</Attribute>
<Attribute AttributeId='urn:thales:xacml:2.0:resource:sub-resource-id' Inclug
<AttributeValue DataType='http://www.w3.0rg/2001/XMLSchema#string'>Team<
</Attribute>
</Attributes>
<Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action">
<Attribute AttributeId='urn:oasis:names:tc:xacml:1.0:action:action-id’
IncludeInResult="false">

buteValue>

t="false">
\ttributeValuce

nManagementAj

eInResult=""f:
AttributeValt

<AttributeValue DataType='http://www.w3.0rg/2001/XMLSchema#string'>manage</AttributeV:

</Attribute>
</Attributes>

<Attributes Category="urn:ocasis:names:tc:xacml:3.0:attribute-category:environment

</Request>

Response:

HTTP/1.1 200 OK
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Response xmlns="urn:ocasis:names:tc:xacml:3.0:core:schema:wd-17">

<Result>
<Decision>Permit</Decision>
<Status>
<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok" />
</Status>
</Result>

n />

16 Chapter 1. Introduction



AuthZForce Documentation, Release 4.3.0

</Response>

Integration with the IdM GE (e.g. for OAuth)

The easy way to integrate with IdM is to delegate the integration to the PEP up-front, i.e. we assume the PEP got
all the required IdM-related info and forwards it to the Authorization PDP in the XACML request; the PEP Proxy by
UPM can provide such a feature.

Software Libraries for clients of AuthZForce or other Authorization PDP GEis

The full API (RESTful) is described by a document written in the Web Application Description Language format
(WADL) and associated XML schema files available in the source release of Github project ‘rest-api-model’, more
specifically in file src/main/resources/authz-api.wadl. Therefore, you can use any WADL-supporting
REST framework for clients; for instance in Java: Jersey, Apache CXF. From that, you can use WADL-to-code
generators to generate your client code. For example in Java, ‘wadl2java’ tools allow to generate code for JAX-RS
compatible frameworks such as Apache CXF and Jersey. Actually, we can provide a CXF-based Java library created
with this tool to facilitate the development of clients.

1.2. AuthZForce - User and Programmers Guide 17


https://github.com/authzforce/rest-api-model/archive/release-4.3.0.zip

AuthZForce Documentation, Release 4.3.0

18 Chapter 1. Introduction



CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

19



	Introduction
	AuthZForce - Installation and Administration Guide
	AuthZForce - User and Programmers Guide

	Indices and tables

